Data Structures and Algorithms

Recursion
The Recursion Pattern

• **Recursion**: when a method calls itself
• Classic example--the factorial function:
 \[n! = 1 \cdot 2 \cdot 3 \cdot \cdots \cdot (n-1) \cdot n \]
• Recursive definition:

\[
f(n) = \begin{cases}
 1 & \text{if } n = 0 \\
 n \cdot f(n-1) & \text{else}
\end{cases}
\]
The Recursion Pattern

• As a Java method:
  ```java
  // recursive factorial function
  public static int recursiveFactorial(int n) {
      if (n == 0) return 1; // basis case
      else return n * recursiveFactorial(n-1); // recursive case
  }
  ```
Content of a Recursive Method

• **Base case(s).**
 – Values of the input variables for which we perform no recursive calls are called **base cases** (there should be at least one base case).
 – Every possible chain of recursive calls **must** eventually reach a base case.

• **Recursive calls.**
 – Calls to the current method.
 – Each recursive call should be defined so that it makes progress towards a base case.
Visualizing Recursion

- Recursion trace
- A box for each recursive call
- An arrow from each caller to callee
- An arrow from each callee to caller showing return value

Example recursion trace:

```
recursiveFactorial(4)
  └── call
    └── recursiveFactorial(3)
      └── call
        └── recursiveFactorial(2)
          └── call
            └── recursiveFactorial(1)
              └── call
                └── recursiveFactorial(0)
```

Final answer: $4! = 24$
Example – English Rulers

- Define a recursive way to print the ticks and numbers like an English ruler:
A Recursive Method for Drawing Ticks on an English Ruler

// draw a tick with no label
public static void drawOneTick(int tickLength) { drawOneTick(tickLength, -1); }
// draw one tick
public static void drawOneTick(int tickLength, int tickLabel) {
 for (int i = 0; i < tickLength; i++)
 System.out.print("-");
 if (tickLabel >= 0) System.out.print(" " + tickLabel);
 System.out.println();
}
public static void drawTicks(int tickLength) {
 if (tickLength > 0) {
 drawTicks(tickLength - 1); // recursively draw left ticks
 drawOneTick(tickLength); // draw center tick
 drawTicks(tickLength - 1); // recursively draw right ticks
 }
}
public static void drawRuler(int nInches, int majorLength) {
 drawOneTick(majorLength, 0); // draw tick 0 and its label
 for (int i = 1; i <= nInches; i++)
 {
 drawTicks(majorLength - 1); // draw ticks for this inch
 drawOneTick(majorLength, i); // draw tick i and its label
 }

Phạm Bảo Sơn - DSA
Visualizing the DrawTicks Method

• An interval with a central tick length $L \geq 1$ is composed of the following:
 - an interval with a central tick length $L-1$,
 - a single tick of length L,
 - an interval with a central tick length $L-1$.

Phạm Bảo Sơn - DSA
Recall the Recursion Pattern

- **Recursion**: when a method calls itself
- Classic example--the factorial function:
 - \(n! = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot (n-1) \cdot n \)
- Recursive definition:

\[
 f(n) = \begin{cases}
 1 & \text{if } n = 0 \\
 n \cdot f(n-1) & \text{else}
\end{cases}
\]

- As a Java method:

```java
// recursive factorial function
public static int recursiveFactorial(int n) {
    if (n == 0) return 1;  // basis case
    else return n * recursiveFactorial(n-1);  // recursive case
}
```
Linear Recursion

• **Test for base cases.**
 – Begin by testing for a set of base cases (there should be at least one).
 – Every possible chain of recursive calls **must** eventually reach a base case, and the handling of each base case should not use recursion.

• **Recur once.**
 – Perform a single recursive call. (This recursive step may involve a test that decides which of several possible recursive calls to make, but it should ultimately choose to make just one of these calls each time we perform this step.)
 – Define each possible recursive call so that it makes progress towards a base case.
A Simple Example of Linear Recursion

Algorithm LinearSum(A, n):

Input:
An integer array A and an integer \(n \geq 1 \), such that A has at least \(n \) elements

Output:
The sum of the first \(n \) integers in A

if \(n = 1 \) then
 return \(A[0] \)
else
 return LinearSum(A, \(n - 1 \)) + \(A[n - 1] \)

Example recursion trace:

- \(\text{LinearSum}(A, 5) \):
 - call \(\text{LinearSum}(A, 4) \)
 - call \(\text{LinearSum}(A, 3) \)
 - call \(\text{LinearSum}(A, 2) \)
 - call \(\text{LinearSum}(A, 1) \)
 - \(\text{return} \ 15 + A[4] = 15 + 5 = 20 \)
 - \(\text{return} \ 13 + A[3] = 13 + 2 = 15 \)
 - \(\text{return} \ 7 + A[2] = 7 + 6 = 13 \)
 - \(\text{return} \ 4 + A[1] = 4 + 3 = 7 \)
 - \(\text{return} \ A[0] = 4 \)
Reversing an Array

Algorithm ReverseArray(A, i, j):

Input: An array A and nonnegative integer indices i and j

Output: The reversal of the elements in A starting at index i and ending at j

if $i < j$ then
 Swap $A[i]$ and $A[j]$
 ReverseArray(A, $i + 1$, $j - 1$)
return
Defining Arguments for Recursion

• In creating recursive methods, it is important to define the methods in ways that facilitate recursion.
• This sometimes requires we define additional parameters that are passed to the method.
• For example, we defined the array reversal method as `ReverseArray(A, i, j)`, not `ReverseArray(A)`.

Phạm Bảo Sơn - DSA
Computing Powers

• The power function, \(p(x, n) = x^n \), can be defined recursively:

\[
p(x, n) = \begin{cases}
1 & \text{if } n = 0 \\
 x \cdot p(x, n-1) & \text{else}
\end{cases}
\]

• This leads to a power function that runs in \(O(n) \) time (for we make \(n \) recursive calls).
• We can do better than this, however.
Recursive Squaring

• We can derive a more efficient linearly recursive algorithm by using repeated squaring:

\[
p(x, n) = \begin{cases}
1 & \text{if } x = 0 \\
x \cdot p(x, (n - 1)/2)^2 & \text{if } x > 0 \text{ is odd} \\
p(x, n/2)^2 & \text{if } x > 0 \text{ is even}
\end{cases}
\]

• For example,

\[
\begin{align*}
2^4 &= 2^{(4/2)^2} = (2^{4/2})^2 = (2^2)^2 = 4^2 = 16 \\
2^5 &= 2^{1+(4/2)^2} = 2(2^{4/2})^2 = 2(2^2)^2 = 2(4^2) = 32 \\
2^6 &= 2^{(6/2)^2} = (2^{6/2})^2 = (2^3)^2 = 8^2 = 64 \\
2^7 &= 2^{1+(6/2)^2} = 2(2^{6/2})^2 = 2(2^3)^2 = 2(8^2) = 128.
\end{align*}
\]
A Recursive Squaring Method

Algorithm Power(x, n):

Input: A number x and integer n = 0
Output: The value x^n

if $n = 0$ then
 return 1

if n is odd then
 $y = \text{Power}(x, (n - 1)/2)$
 return $x \cdot y \cdot y$

else
 $y = \text{Power}(x, n/2)$
 return $y \cdot y$
Analyzing the Recursive Squaring Method

Algorithm Power(x, n):

Input: A number x and integer n = 0
Output: The value x^n

if $n = 0$ then
 return 1
if n is odd then
 $y = \text{Power}(x, (n - 1)/2)$
 return $x \cdot y \cdot y$
else
 $y = \text{Power}(x, n/2)$
 return $y \cdot y$

Each time we make a recursive call we halve the value of n; hence, we make log n recursive calls. That is, this method runs in $O(\log n)$ time.

It is important that we used a variable twice here rather than calling the method twice.
Tail Recursion

• Tail recursion occurs when a linearly recursive method makes its recursive call as its last step.
• The array reversal method is an example.
• Such methods can be easily converted to non-recursive methods (which saves on some resources).
• Example:

Algorithm IterativeReverseArray(A, i, j):
 Input: An array A and nonnegative integer indices i and j
 Output: The reversal of the elements in A starting at index i and ending at j
 while i < j do
 Swap A[i] and A[j]
 i = i + 1
 j = j - 1
 return
Binary Recursion

• Binary recursion occurs whenever there are **two** recursive calls for each non-base case.

• Example: the DrawTicks method for drawing ticks on an English ruler.
A Binary Recursive Method for Drawing Ticks

// draw a tick with no label
public static void drawOneTick(int tickLength) { drawOneTick(tickLength, -1); }

// draw one tick
public static void drawOneTick(int tickLength, int tickLabel) {
 for (int i = 0; i < tickLength; i++)
 System.out.print("-");
 if (tickLabel >= 0) System.out.print(" "+tickLabel);
 System.out.print("n");
}

public static void drawTicks(int tickLength) { // draw ticks of given length
 if (tickLength > 0) {
 // stop when length drops to 0
 drawTicks(tickLength-1); // recursively draw left ticks
 drawOneTick(tickLength); // draw center tick
 drawTicks(tickLength-1); // recursively draw right ticks
 }
}

public static void drawRuler(int nInches, int majorLength) { // draw ruler
 drawOneTick(majorLength, 0); // draw tick 0 and its label
 for (int i = 1; i <= nInches; i++)
 {
 drawTicks(majorLength-1); // draw ticks for this inch
 drawOneTick(majorLength, i); // draw tick i and its label
 }
 }
}

Note the two recursive calls
Another Binary Recursive Method

• Problem: add all the numbers in an integer array A:

Algorithm BinarySum(A, i, n):

Input: An array A and integers i and n
Output: The sum of the n integers in A starting at index i

if n = 1 then
 return A[i]
return BinarySum(A, i, n/2) + BinarySum(A, i + n/2, n/2)

• Example trace:
Computing Fibonacci Numbers

• Fibonacci numbers are defined recursively:

\[
F_0 = 0 \\
F_1 = 1 \\
F_i = F_{i-1} + F_{i-2} \quad \text{for } i > 1.
\]

• As a recursive algorithm (first attempt):

\begin{algorithm}
\textbf{Algorithm} BinaryFib(k):
\begin{itemize}
 \item \textbf{Input}: Nonnegative integer \(k \)
 \item \textbf{Output}: The \(k \)th Fibonacci number \(F_k \)
\end{itemize}
\begin{algorithmic}
 \If {\(k \leq 1 \)}
 \State \textbf{return} \(k \)
 \Else
 \State \textbf{return} \text{BinaryFib}(k - 1) + \text{BinaryFib}(k - 2)
 \EndIf
\end{algorithmic}
\end{algorithm}
Analyzing the Binary Recursion Fibonacci Algorithm

- Let n_k denote number of recursive calls made by BinaryFib(k). Then
 - $n_0 = 1$
 - $n_1 = 1$
 - $n_2 = n_1 + n_0 + 1 = 1 + 1 + 1 = 3$
 - $n_3 = n_2 + n_1 + 1 = 3 + 1 + 1 = 5$
 - $n_4 = n_3 + n_2 + 1 = 5 + 3 + 1 = 9$
 - $n_5 = n_4 + n_3 + 1 = 9 + 5 + 1 = 15$
 - $n_6 = n_5 + n_4 + 1 = 15 + 9 + 1 = 25$
 - $n_7 = n_6 + n_5 + 1 = 25 + 15 + 1 = 41$
 - $n_8 = n_7 + n_6 + 1 = 41 + 25 + 1 = 67$.

- Note that the value at least doubles for every other value of n_k. It is exponential!
A Better Fibonacci Algorithm

• Use linear recursion instead:

Algorithm LinearFibonacci(k):
 Input: A nonnegative integer \(k \)
 Output: Pair of Fibonacci numbers \((F_k, F_{k-1})\)
 if \(k = 1 \) then
 return \((k, 0)\)
 else
 \((i, j) = \text{LinearFibonacci}(k - 1)\)
 return \((i + j, i)\)

• Runs in \(O(k) \) time.
Multiple Recursion

• Motivating example: summation puzzles
 • \(pot + pan = bib \)
 • \(dog + cat = pig \)
 • \(boy + girl = baby \)

• Multiple recursion: makes potentially many recursive calls (not just one or two).
• Find all subset of a certain length.
Algorithm for Multiple Recursion

Algorithm `PuzzleSolve(k,S,U)`:
Input: An integer k, sequence S, and set U (the universe of elements to test)
Output: An enumeration of all k-length extensions to S using elements in U without repetitions

if $k = 0$ then
 Test whether S is a configuration that solves the puzzle
 if S solves the puzzle then
 return “Solution found: ” S
 else
 for all e in U do
 Remove e from U \{ e is now being used $\}$
 Add e to the end of S
 `PuzzleSolve(k - 1, S,U)`
 Add e back to U \{ e is now unused $\}$
 Remove e from the end of S

Phạm Bảo Sơn - DSA
Visualizing PuzzleSolve

Initial call

PuzzleSolve(3,{},\{a,b,c\})

PuzzleSolve(2,a,\{b,c\})

PuzzleSolve(2,b,\{a,c\})

PuzzleSolve(2,c,\{a,b\})

PuzzleSolve(1,ab,\{c\})

PuzzleSolve(1,ba,\{c\})

PuzzleSolve(1,ca,\{b\})

PuzzleSolve(1,ac,\{b\})

PuzzleSolve(1,ba,\{c\})

PuzzleSolve(1,cb,\{a\})

PuzzleSolve(1,cb,\{a\})

abc

acb

bac

bca

cab

cba